Навигация > Главная > Внутренние болезни > ГЛАВА 79. ОСНОВЫ ПРОТИВООПУХОЛЕВОЙ ТЕРАПИИ

ГЛАВА 79. ОСНОВЫ ПРОТИВООПУХОЛЕВОЙ ТЕРАПИИ


ГЛАВА 79. ОСНОВЫ ПРОТИВООПУХОЛЕВОЙ ТЕРАПИИ

 

Винсент Т . де Вита (Vincent Т . De Vita, JR.)

Биология опухолевого роста

 

Основы противоопухолевой терапии базируются на наших знаниях о биоло­гии опухолевого роста. Два десятилетия назад представление о том, что даже маленькие по размерам первичные раковые опухоли отторгают жизнеспособные опухолевые клетки в систему циркуляции и эти клетки способны расти так же, как и в первичной опухоли, фундаментально изменили представления о вероят­ности полного излечения рака маршрутом применения лишь методом локального контроля первичного источника, что и привело к развитию системных методов воздей­ствия, таких как химиотерапия и биологические методы лечения. Оказалось, что раковый фенотип возникает в результате нарушений в генетических механизмах, имеющих значение для биологии развития. В нормальном геноме существует группа генов, хранимых с высоким постоянством. Имеются сведения о том, что нарушение их структуры или изменение локализации в пределах генома являются ответственными за нарушение регуляции роста вследствие продукции несвойственных норме протеинов или необычных их количеств. Желая протоонкогены были первоначально выявлены в несовершенных онкогенных ретровирусах, существование протоонкогенов в нормальных тканях и онкогенов во многих рако­вых опухолях человека было доказано в опытах с переносом ДНК (см. гл. 59). Возрастание или нарушение экспрессии было обнаружено в мелкоклеточном раке легкого, раке толстой кишки и молочной железы, лимфомах. Злокачест­венный фенотип более всего схож на окончательный результат экспрессии каскада этих генов. Тот факт, что продукты этих генов являются главными для роста клеток, подчеркивается частичным их соответствием некоторым факторам роста и их рецепторам. Опыты на мышах, подвергнутых генной мутации (мыши вво­дились одиночные копии онкогенов маршрутом вставки в оплодотворенную яйце­клетку), обеспечили открытие главного пути для выявления каскада генов, активированных для каждого гистологического типа рака, и применимы для контроля экспрессии этих генов как будущих средств предостережения, диагно­стики или лечения рака у человека. Например, показано, что фосфорсодержащие производные нуклеозидов, комплементарные ДНК знаменитых онкогенов, которые могут пенетрировать клеточные мембраны, способны блокировать трансляцию м-РНК и препятствовать функционированию этих генов in vitro.

Так как протоонкогены — это главные элементы в регуляции эмбриональ­ного роста, то неудивительно, что расстройства регуляции могут привести к не­контролируемому патологическому росту. Для опухолевых клеток отличительны не только неконтролируемый рост, но и способность к миграции и метастазированию в жизненно главные органы с замещением их ткани. Некоторые группы клеток клонируют гены, ответственные за регуляцию способности к метастазированию. Это дает основание предположить, что, сходственно механизмам регуляции роста, способность к метастазированию является нарушением генетических меха­низмов, ответственных за миграцию нормальных .клеток. Свойство метастазировать, возможно, связано со способностью злокачественных клеток экспрессировать рецепторы к белку базальной мембраны — ламинину и таким ферментам, как коллагеназы (необходимым для фиксации клеток к базальной мембране и ее разрушения), тем самым творя возможность для удаления клетки от места ее первоначальной локализации. В исследованиях на человеке было показано, что клетки рака молочной железы экспрессируют громадное количество рецепторов к ламинину. При этом имеется прямая зависимость между экспрессией рецеп­торов и метастазированием в подмышечные лимфатические узлы. Развитие спо­собности к метастазированию, возможно, является условно поздней сту­пенью в цепи генетических нарушений, приводящих к развернутой клинической картине опухолевого процесса. Этот факт следует учитывать, анализируя появле­ние поздних отдаленных метастазов при опухолях великих размеров опреде­ленного гистологического строения. Воздействие на способность раковых клеток к миграции имеет терапевтическое значение. Блокирование рецепторов ламинина фрагментами молекулы ламинина in vitro убавляет способность клеток к мета­стазированию in vivo.

 

 

Рис. 79-1. Клеточный цикл.

Терминология определенных периодов клеточного цикла включает следующие фазы — М, G1, S и G2. М — период клеточного деления; g1 — период нормального клеточного метаболизма, но при неименьи синтеза репликации ДНК; клетки, которые в течение долгого медли остаются в G1-фазе, часто расцениваются как элементы, находя­щиеся в G0-фазе; S-фаза, или фаза синтеза ДНК,— период редупликации ДНК; за ней следует G2-фаза, или тетраплоидная фаза, которая предшествует дробленью клетки. Нормальные и раковые клетки характеризуются сходными временными циклами, обычно М-фаза — 0,5—1 ч, g1 — от 2 ч до бесконечности, S — от 6 до 24 ч, G2 — от 2 до 8 ч.

 

 

При малигнизации клеток кинетика их роста легко определима и сходна с таковой у клеточных элементов нормальных тканей. В зависимости от особен­ностей роста нормальные ткани подразделяются на три главных класса: возоб­новляющиеся (герминативные клетки и клетки костного мозга), развивающиеся (печень, почки, эндокринные железы) и статические (нейроны и поперечно-полосатые мышечные волокна). В статических тканевых системах (например, нейроны) клетки живут в течение жизни целостного организма и не восстанав­ливаются в случае их разрушения. В восстанавливающихся тканях клетки приоб­ретают явную способность к дробленью только после убавленья клеточной массы (вследствие травмы или хирургического вмешательства), и объем ткани восстанавливается. Взрослые клетки восстанавливающихся тканей имеют опреде­ленный, обычно краткий жизненный цикл и замещаются за счет пула ство­ловых клеток. До тех пор пока интенсивность размножения клеток не начинает доминировать над процессом их погибели, неопластические процессы не обнаружи­вают себя (заметим, что и клетки нормального костного мозга способны к «мета­стазированию», расселяясь за его пределы). Вне зависимости от тканевого источ­ника злокачественного роста кинетика растущей популяции опухолевых клеток подобна таковой в восстанавливающихся нормальных тканях. Необыкновенности раз­вивающейся опухоли превосходнее всего отражены как функция Compertzian. При увеличении клеточной массы рост опухоли соизмерим с экспоненциальным отста­ванием роста. Время удвоения опухоли (время, за которое происходит увеличение массы опухоли вдвое) — трудная величина, зависящая от медли клеточ­ного цикла, количества в популяции клеток в фазе разделенья и гибнущих клеточ­ных форм. Фазы клеточного цикла разделенья представлены на рис. 79-1. Жизне­способные клетки, не участвующие в цикле, но способные при определенных условиях к дробленью, находятся в так именуемой-фазе покоя (G0). Часть клеток данной популяции, находящихся в цикле клеточного разделенья (пролиферативный пул, фракция роста), можно выявить подключению 3Н-тимидина в ДНК (индекс ловки), четко отражающему скорость роста опухоли. Несмотря на то что скорость роста опухоли для данного гистологического типа является условно постоян­ной величиной, существуют веские различия во медли клеточного цикла опухолевой ткани и ее нормального тканевого аналога. При одинаковой про­должительности клеточного цикла прытче удвоится опухоль с более высоким показателем пролиферативного пула в случае одинакового количества гибнущих и метастазирующих клеток (потеря клеток). Именно большей утратой клеток можно объяснить долгий период удвоения массы опухоли при высоких пока­зателях пролиферативного пула (фракции роста). Потеря клеток начинается на ранних этапах роста опухоли. Даже малюсенькие (размером 1—2 мм) хорошо от­граниченные опухоли утрачивают клетки вследствие их проникновения в окружаю­щие ткани (например, опухоль толстой кишки утрачивает клетки со своей поверх­ности в просвет органа), лимфу или кровь. Потеря клеток может быть связана с их миграцией вследствие активного метастазирования или неспособностью кле­ток к образованию жизнеспособных колоний. Тот факт, что некоторые злока­чественные опухоли поддаются местному лечению, подтверждает предположение о том, что многие клетки, отторгнутые от первичной опухоли, по различным причи­нам не могут образовать метастатические источники. Одной из таких причин может быть неимение расстройств регуляции генов, ответственных за клеточную миг­рацию.

Клональное развитие рака.Концепция развития опухоли из единственной трансформированной клетки или клона основывается на цитогенетических иссле­дованиях новообразований человека. Классическим образцом клонального проис­хождения опухоли является множественная миелома, представленная опухоле­выми плазматическими клетками, секретирующими в великом количестве один и тот же тип молекулы глобулина, обнаруживаемый в крови или моче. Специфиче­ские нарушения структуры хромосом выявлены более чем в 95% всех опухолей. Первой была описана филадельфийская хромосома, встречающаяся почти у 95% больных хроническим миелолейкозом (ХМЛ) (гл. 289). В некоторых случаях аномальная хромосома 22 обнаруживается в кроветворных клетках-предшествен­никах за несколько лет до клинического проявления лейкоза. Клональное проис­хождение этого заболевания в последующем подтвердилось изучением Х-инактивированной мозаичности. Каждая клетка женщины детерминирована на ранних стадиях эмбриогенеза и не зависит от активации или супрессии отцовской или материнской Х-хромосомы. С Х-хромосомой связан фермент глюкозо-6-фосфат-дегидрогеназа (Г-6-ФД), оказавшийся хорошим маркером для изучения клональ­ного происхождения опухолей благодаря своему полиморфизму в популяции чернокожего народонаселения. Женщины, гетерозиготные по локусу Г-6-ФД для общего гена GdA и вариантного GdА имеют две разные популяции клеток, что отра­жается на картине электрофореза. В то время как в лейкоцитах женщин, гетерозиготных по Г-6-ФД и не страдающих лейкозом, определяют оба (А и В) типа фермента. У пациентов с хроническим миелолейкозом в опухолевых гранулоцитах обнаруживается только один тип фермента, что предполагает развитие хвори из одного клона клеток. Для некоторых онкогенов были обнаружены места расположения в зонах транслокаций, например на хромосомах 9 (с-abl) и 22 (c-sis) при хроническом миелолейкозе и хромосоме 14 (c-myc) при лимфоме Беркитта. В заключительном случае продукт гена C-myc не изменен, но экспрессирован весьма существенно, так как подчинен контролю последовательности промотора гена иммуноглобулина тяжелых цепей на хромосоме 14. Показано, что цитогенетические нарушения при таких злокачественных заболеваниях, как острый миелолейкоз, могут служить показателем чувствительности заболевания к лечению и, по-видимому, типичны для определенного типа клеток. У больных с рецидивами после стойкой ремиссии, достигнутой в результате химиотерапии, обычно появляются исходные цитогенетические нарушения, которые вместе с тем могут быть связаны и с дополнительными транслокациями. При исследовании генов, регулирующих синтез глобулинов, обнаружено биклональное происхожде­ние фолликулярных лимфом. При нейрофиброме и трихоэпителиоме, являющихся потомственными опухолями, обнаружено два энзимных фенотипа, что указывает на поликлональный генез этих новообразований. Эти исключения предпола­гают, что теория соматической мутации онкогенеза не может быть единственной для разъяснения происхожденья всех видов новообразований.

 

Химиотерапевтические средства, используемые для системного лечения рака

 

Цитотоксические препараты.Облучение и хирургические методы лечения применяются для убавленья массы опухоли при ее локализации в доступных для лучевого воздействия и иссечения областях человеческого организма. Ни тот, ни иной метод не пригоден для воздействия на широко рассеянные или циркулирующие опухолевые клетки, которые так отличительны для большинства злокачественных новообразований. Толчком к развитию системного противо­опухолевого лечения послужили открытия антибиотиков, используемых, для лече­ния бактериальных инфекций, и антипротозойных противомалярийных средств. Развитие лечебной терапии рака началось со случайного обнаружения цитотоксического деяния на лимфоциты горчичных газов, применявшихся во время I и II мировых войн. Противоопухолевое вещество—азотистый иприт (производное горчичного газа иприта) использовалось для лечения лимфом в 40-х годах. Так как у лиц, страдающих хворью Ходжкина и лимфоцитарными лимфомами и, -казалось бы, с успехом врачёванных азотистым ипритом, впослед­ствии наблюдали рецидивы заболевания., возникли разочарование и скептицизм в отношении эффективности медикаментозной терапии опухолей. Опять появив­шиеся надежды на химиотерапию связаны с эффективным применением анти­метаболита метотрексата при лечении лейкозов у детей, а затем и хорошие ре­зультаты лечения хорионкарциномы. Ремиссии, достигнутые с использованием метотрексата, имели стойкий характер. В 50-х годах была осознана необходи­мость стандартизации в развитии и производстве противоопухолевых средств. С. тех пор было открыто множество синтетических, ферментных и растительных веществ, владеющих противоопухолевым эффектом при новообразованиях у гры­зунов. Эти соединения были получены как целенаправленным синтезом, так и случайным маршрутом. В истиннее время существует шесть главных классов про­тивоопухолевых веществ: алкилирующие вещества, антиметаболиты, раститель­ные алкалоиды, противоопухолевые, антибиотики, гормоны, биологически актив­ные вещества, а также смешанные формы. Все эти средства или уже используют­ся в качестве коммерческих препаратов, или проходят фазу клинических испы­таний. Перечень этих препаратов с описанием вероятных острых и хронических токсических эффектов приведен в табл. 79-1 и 79-2. Детальное обсуждение меха­низмов их фармакологического деяния дано в ссылках на литературные источ­ники.

Развитие лечебной устойчивости.Пределы возможностей хирургическо­го метода лечения злокачественных опухолей определяются объемом нормальной ткани, который можно удалить без убытка для функции органа. Устойчивость к лучевому воздействию зависит от радиационной толерантности прилежащих к опухоли нормальных тканей, в то время как применению противоопухолевых препаратов в очень великих порциях препятствует не только их токсическое воз­действие на нормальные ткани, но и то обстоятельство, что сами опухолевые клетки владеют резистентностью (временной или постоянной) к воздействию противоопухолевых средств. Временная резистентность может быть связана с тем, что клетки опухоли находятся в разных фазах клеточного цикла разделенья, в зонах, недоступных для деяния, целебных средств (например, централь­ная сердитая система или яичко), или в центре слабоваскуляризованных ново­образований, т. е. участках, недосягаемых для активной дозы препарата. Стой­кая резистентность объясняется необыкновенностями механизмов транспортировки целебных веществ в организме человека, их дезактивации и восстановле­ния убытка, нанесенного деяньем химиопрепаратов. Способы преодоления вре­менной резистентности были удачно разработаны и включают в себя: начало лечения опухолевого заболевания на ранних этапах его развития, преодоление фармакологического барьера с поддержкою введения целебных веществ не­посредственно в пораженный орган (например, внутриоболочечное введение мето­трексата при лейкозе) и, наконец, в убавленьи массы опухолевых клеток маршрутом применения лучевой терапии или хирургического вмешательства. Заключительный путь преодоления лечебной устойчивости применяется при раке яичника и вклю­чает в себя удаление великого сальника. По-видимому, убавленье массы опухоли повышает чувствительность раковых клеток к последующему терапевти­ческому воздействию. Попытки объяснить обратную зависимость между излечимостью процесса и количеством опухолевых клеток необыкновенностями клеточной кинетики при инвазивных образованиях успеха не имели, так как в этих случаях резистентность развивается при увеличении числа опухолевых клеток с 103 до 108. В этом промежутке кинетика клеточного цикла остается постоянной. В даль­нейших исследованиях воздействия химиотерапии на течение опухолевого процесса у человека было показано, что выгода этого вида воздействия на ранних стадиях развития рака несколько больше, чем при применении тех же препаратов у больных с развернутой клинической картиной заболевания вне зависимости от благосклонной кинетики в микрометастазах.

В 1979г. Goldie и Goldman предположили, что механизм развития стойкой резистентности к противоопухолевым препаратам имеет много общего с развитием резистентности бактерий к бактериофагу и является спонтанным генетическим эффектом. В этой модели есть несколько существенных моментов. Во-первых, существует теснейшая связь между вероятностью убавленья излечимости и скоростью увеличения массы опухоли, необходимой для 6-кратного удвоения или 2-х log увеличения количества опухолевых клеток. Если скорость мутации будет одинакова 10–6 или выше, то почти несомненным будет образование одной или двух клеточных линий, резистентных к химиопрепаратам при размере опухоли 109, размере, при котором злокачественное новообразование становится клинически выявляемым. Этот факт дозволяет предположить, что неэффективность противо­опухолевых средств зависит от существования множества резистентных опухо­левых клеточных линий. Если уровень мутаций ниже 10–6 безусловное число резистентных клеточных линий в опухоли будет достаточно низким для получения хорошего эффекта желая бы на первых этапах химиотерапии. В принципе были бы вероятны и полные ремиссии, но резистентные клеточные линии могут уве­личиваться в объеме и вызывать рецидивы заболевания при длящемся воздействии химиотерапии (рис. 79-2). Это вполне согласуется с клиническими наблюдениями опухолей, поддающихся лечению на начальных этапах химио­терапии и опять восстанавливающихся при длящемся ее воздействии. Уровень мутаций у бактерий — случайное явление, что, возможно, справед­ливо и для генетически нестабильных опухолевых клеток. У опухолей одного и того же типа и одной стадии процесса уровень мутаций может быть различ­ным, от чего, возможно, в немалой ступени и зависит эффект проводимого лечения и разная выживаемость у однородной группы больных (с одинаковой ста­дией заболевания и опухолями одного и того же гистологического типа).

 

 

Рис. 79-2. Популяционный состав и взаимоотношения между популяциями в гипотетической опухоли.

 

Многолетней загадкой является резистентность к химиотерапии новообразова­ний внутренних органов у взрослых по сопоставленью с опухолями у детей или новооб­разованиями кроветворной системы. Причем при многих опухолях внутренних органов вообще не наблюдается эффекта от химиотерапии. И желая на первый взгляд это вовсе не согласуется с догадкой Goldie—Goldman, существует несколько объяс­нений этому явлению. Во-первых, опухолевые клетки могут иметь врожденную устойчивость к химиопрепаратам, свойственную нормальным тканям, послужив­шим источником развития опухоли. Они могут хранить механизмы детоксикации природных токсинов, из которых были получены многие противоопухолевые средства. Во-вторых, уровень мутаций развившихся из этих тканей опухолей может быть достаточно высоким в результате воздействия потенциальных кан­церогенов, таких как курение и др. В-третьих, впечатление о том, что опухоль диаметром 1 см прошла 30 удвоений для того, чтобы достигнуть 109 клеток (рис. 79-3), основывается на предположении об экспоненциальном характере роста, достаточно редком явлении в опухолях человека и животных. Так как во многих хорошо выученных опухолях внутренних органов человека потеря клеток сочиняет 90%, то требуется ни много ни малюсенько 1200 удвоений, чтобы опухоль достигла размера, одинакового 109 клеток. Если резистентность действительно свя­зана с мутацией и определяется числом клеточных дроблений, то такие опухоли к моменту постановки клинического диагноза будут состоять из великого количе­ства клеточных линий, резистентных ко множеству химиотерапевтических аген­тов. Эти факты согласуются с клиническими данными о медли удвоения таких высокорезистентных опухолей человека, как рак толстой кишки, для которой время удвоения сочиняет около двух лет. Клинические подтверждения теории Goldie—Goldman достаточно фундаментальны. Во-первых, это единственное прием­лемое разъяснение эффективности сочетанной химиотерапии и неизменен­ной обратной связи между числом опухолевых клеток и выживаемостью. Во-вторых, она подчеркивает, необходимость лечебной терапии на самых ран­них этапах развития заболевания. В-третьих, можно с уверенностью полагать, что замедление в лечении даже на краткий срок от нескольких недель до одного месяца может веско изменить чувствительность опухоли к препара­там. Это предположение и было подтверждено клиническими наблюдениями за течением опухолевого процесса при раке молочной железы, когда отсрочка в лечении на месяц отрицательно повлияла на исход адъювантной химиотерапии. Эта теория изъясняет также и неудачу химиотерапии там, где ждали поло­жительных результатов. Причина этого содержится в том, что, возможно, общая масса микрометастазов превышает 109 клеток.

Многие механизмы стойкой специфической резистентности к доступным химиопрепаратам уже определены, и большинство из них базируется на генетической основе, что было продемонстрировано в экспериментах по переносу генов. Это положение проиллюстрировано в табл. 79-3. Внесем два необходимых уточнения. Политропная резистентность (резистентность ко множеству различ­ных классов химиопрепаратов без предшествующего воздействия) была описана при раке грызунов и человека. Политропная резистентность порождает пере­крестную резистентность к-большинству лучших и наиболее часто применяемых противоопухолевых средств, представляющих собой громадный арсенал веществ растительного происхождения и производных микроорганизмов. Нередко такая резистентность связана с появлением поверхностного гликопротеина с мол. мас­сой 170000, причем его количество и определяет ступень резистентности. Обна­ружение этого гликопротеина может оказаться эффективным для выявления резистентных клеточных линий до начала химиотерапии. Представляется, что политропная резистентность может быть также вызвана недостаточным накопле­нием целебных веществ в связи с их прытким выведением из организма. Знаменито, что многие препараты сами по себе не владеют противоопухолевой активностью, но при исследовании в экспериментальных системах потенцируют цитотоксический эффект некоторых химиотерапевтических средств (табл. 79-4). Антагонисты кальция, ингибиторы кальмодулина, полнённые антибиотики, ана­логи трипаронала (Triparonal) и противоаритмические агенты владеют общим свойством желая бы частично увеличивать локальное накопление противоопухоле­вых препаратов в резистентных опухолевых клетках. Поскольку политропная лечебная резистентность во многом связана с убавленьем накопления противоопухолевых средств, вещества, увеличивающие уровень их содержания в клетках, привлекают внимание как потенциальные средства борьбы с первич­ной и политропной резистентностью, неподражаемо у больных с рецидивом заболе­вания.

 

 

Рис. 79-3. Схематическое изображение жизненного цикла опухоли человека. Количество опухолевых клеток, имеющихся в организме, показано на оси ординат, коли­чество удвоенной массы опухоли — на оси абсцисс. Клинические феномены, имеющие отношение к ожидаемому размеру массы опухоли,—на линии графика. К моменту постановки диагноза (1 см массы) большинство опухолей проходят по крайней мере 2/3 периода своего роста (32 удвоения).

 

Таблица 79-3. Механизмы резистентности к цитотоксическим препаратам

 

Основной механизм

Препарат

Специфические нарушения

Несовершенный тран­спорт

Метотрексат Мелфалан Эмбихин Цитарабин

Снижение промежуточного ус­воения

Снижение мембранных нуклео-зидных связывающих зон

Нарушенный метабо­лизм активных форм

Цитарабин 5-Азацитидин 5-Фторурацил

6-Меркаптопурин 6-Тиогуанин ) Метотрексат Адриамицин

Снижение деоксицитидинкиназ-ной активности Снижение уридинцитидинкиназ-ной активности Снижение уридинкиназной ак­тивности, снижение уровней кислой фосфорибозилтрансфе-разы и уридинфосфорилазы Снижение HGPRT-активности

Дефект полиглютамации Снижение Р450 или флавинре-дуктазы

Увеличение лекарст­венной инактивации

6-Меркаптопурин 6-Тиогуанин Цитарабин

Алкилирующие веще­ства

Возрастание мембранной щелоч­ной фосфотазы Возрастание цитидиндеаминаз-ной активности Возрастание внутриклеточного глутатиона или металлотионеина

Нарушение репарации ДНК

Алкилирующие вещества Цисплатин Адриамицин

Возрастание эффективности уда­ления испорченных основа­ний и/или связывание удален­ных сегментов

Амплификация генов с увеличением со­держания белка-ми­шени

Кадмий

N-фосфоацетиласпа-рагиновая кислота

Метотрексат 5-Фторурацил Пентостатин

Увеличение количества копий гена металлотионеина

Увеличение количества копий ге­на аспарагинотранскарбами-лазы Увеличение количества гена DHFR ? Увеличение количества копий гена тимидинситетазы ? Увеличение количества копий гена аденозиндеаминазы

Повреждение мишеней

Метотрексат Винкристин 5-Фторурацил Гидроксимочевина

Стероиды

Повреждение DHFP / Повреждение тубулина Повреждение тимидинсинтетазы Повреждение рибонуклеотидре-дуктазы Повреждение стероидного ре­цептора Повреждение стероидного рецеп-торного комплекса, блокирую­щего ДНК

Повреждение нуклео-тидных пулов Возрождение путей

Цитарабин 5-Фтораурацил ) Метотрексат 5-Фторурацил

Увеличение внутриклеточных пу­лов СТР и dCTP Увеличение сохранности пурино-вых оснований Возрастание тимидинкиназной активности

Л1С

Главной механизм

Препарат

Специфические нарушения

Политропная лекарст­венная устойчивость

Адриамицин Винка-алкалоиды

Дактиномицин Иные естественные продукты

Несовершенная аккумуляция препарата, водящая к возрас­танию энергозависимой утечки

? Специфические мембранные гликопротеиновые маркеры

 

 

Таблица 79-4. Модуляция лечебной устойчивости

 

Препараты

Воздействую­щие противо­опухолевые препараты

Предположительный механизм воз­растающей цитотоксичности

Антагонисты ионов кальция

 

 

 

Верапамил

VCR, DNP,

Возрастающая аккумуляция за

Нифедипин

ADR

счет блока выведения

Нитрендипин (Nitrendipine)

 

 

 

 

Кароверин (Caroverine)

 

 

 

 

Ингибиторы кальмодулина

 

 

То же

Дифрил

VCR, DNP

Советуем почитать:

Вы должны быть зарегестрированны, чтобы оставить комментарий Войти

Разделы медицины

Акушерство и гинекология
Аллергология
Альтернативная медицина
Ветеринария
Гастроэнтерология, проктология
Генетика
Дерматология и венерология
Доказательная медицина
Здоровье и красота
Иммунология
Инфекционные болезни
Кардиология и кардиохирургия
Лабораторная диагностика
Медицинское страхование
Медтехника и технологии
Наркология
Неврология и нейрохирургия
Онкология и гематология
Организация здравоохранения
Оториноларингология
Официальные документы
Офтальмология
Педиатрия и неонатология
Психиатрия и психология
Пульмонология, фтизиатрия
Радиология и рентгенология
Реабилитология и физиотерапия
Реаниматология и анестезиология
Ревматология
Сексология
Стоматология
Судебная медицина
Терапия
Токсикология
Травматология и ортопедия
Урология и нефрология
Фармакология и фармация
Фундаментальная медицина
Функциональная диагностика
Хирургия
Эндокринология

Лекарственные травы

Лекарственные травы при заболевании костей, суставов
Лекарственные травы при заболеваниях желудка, кишечника
Противопоносные травы
Слабительные травы
Травы при язвенной болезни
Травы, возбуждающие аппетит
Травы, повышающие кислотность желудочного сока
Мочегонные травы
Остальные лекарственные травы
Отхаркивающие травы
При болезнях глаз травы
При болезнях кожи и волос травы
Противоаллергические травы
Противовоспалительные и противомикробные травы
Противоопухолевые травы
Противопаразитарные травы
Сердечно-сосудистые травы
Травы при повышенном кровяном давлении
Травы при пониженном кровяном давлении
Травы, укрепляющие сосуды
Травы, улучшающие питание и функцию сердца
Травы при заболеваниях печени, желчного пузыря
Травы, влияющие на кровь
Антикоагулянты (разжижающие кровь)
Кровоостанавливающие травы
Травы, улучшающие состав крови
Травы, влияющие на нервную систему
Тонизирующие травы
Травы, улучшающие функцию нервной системы
Успокаивающие травы
Травы, улучшающие обмен веществ
med news © 2009 "Новости медицины , народные методы лечения, описание болезней, трав, здоровье семьи и детей.". Карта сайта.